A Dynamic Logistic Multiple Classifier System for Online Classification
نویسنده
چکیده
We consider the problem of online classification in nonstationary environments. Specifically, we take a Bayesian approach to sequential parameter estimation of a logistic MCS, and compare this method with other algorithms for nonstationary classification. We comment on several design considerations.
منابع مشابه
Voltage Sag Compensation with DVR in Power Distribution System Based on Improved Cuckoo Search Tree-Fuzzy Rule Based Classifier Algorithm
A new technique presents to improve the performance of dynamic voltage restorer (DVR) for voltage sag mitigation. This control scheme is based on cuckoo search algorithm with tree fuzzy rule based classifier (CSA-TFRC). CSA is used for optimizing the output of TFRC so the classification output of the network is enhanced. While, the combination of cuckoo search algorithm, fuzzy and decision tree...
متن کاملEfficient Online Learning for Large-Scale Sparse Kernel Logistic Regression
In this paper, we study the problem of large-scale Kernel Logistic Regression (KLR). A straightforward approach is to apply stochastic approximation to KLR. We refer to this approach as non-conservative online learning algorithm because it updates the kernel classifier after every received training example, leading to a dense classifier. To improve the sparsity of the KLR classifier, we propose...
متن کاملFault diagnosis in a distillation column using a support vector machine based classifier
Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...
متن کاملThyroid disorder diagnosis based on Mamdani fuzzy inference system classifier
Introduction: Classification and prediction are two most important applications of statistical methods in the field of medicine. According to this note that the classical classification are provided due to the clinical symptom and do not involve the use of specialized information and knowledge. Therefore, using a classifier that can combine all this information, is necessary. The aim of this s...
متن کاملCombining Methods for Dynamic Multiple Classifier Systems
Most of what we know about multiple classifier systems is based on empirical findings, rather than theoretical results. Although there exist some theoretical results for simple and weighted averaging, it is difficult to gain an intuitive feel for classifier combination. In this paper we derive a bound on the region of the feature space in which the decision boundary can lie, for several methods...
متن کامل